Detection of motion artifact patterns in photoplethysmographic signals based on time and period domain analysis.

نویسندگان

  • R Couceiro
  • P Carvalho
  • R P Paiva
  • J Henriques
  • J Muehlsteff
چکیده

The presence of motion artifacts in photoplethysmographic (PPG) signals is one of the major obstacles in the extraction of reliable cardiovascular parameters in continuous monitoring applications. In the current paper we present an algorithm for motion artifact detection based on the analysis of the variations in the time and the period domain characteristics of the PPG signal. The extracted features are ranked using a normalized mutual information feature selection algorithm and the best features are used in a support vector machine classification model to distinguish between clean and corrupted sections of the PPG signal. The proposed method has been tested in healthy and cardiovascular diseased volunteers, considering 11 different motion artifact sources. The results achieved by the current algorithm (sensitivity--SE: 84.3%, specificity--SP: 91.5% and accuracy--ACC: 88.5%) show that the current methodology is able to identify both corrupted and clean PPG sections with high accuracy in both healthy (ACC: 87.5%) and cardiovascular diseases (ACC: 89.5%) context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of motion artifacts in photoplethysmographic signals: Algorithms comparison

The presence of motion artifacts in the photoplethysmographic (PPG) signals is one of the major obstacles in the extraction of reliable cardiovascular parameters in real time and continuous monitoring applications. In the current paper we present a comparison between two motion artifacts detection methodologies proposed by Couceiro et al. [1] and Correia T. [2]. The first method is based on the...

متن کامل

Seismic Amplification of Peak Ground Acceleration, Velocity, and Displacement by Two-Dimensional Hills

There are valuable investigations on the amplification effects of the topography on the seismic response in the frequency domain; however, a question is that how one can estimate the amplification of time domain peak ground acceleration (PGA), peak ground velocity (PGV), and peak ground displacement (PGD) over the topographic structures. In this study, the numerical approach has been used for t...

متن کامل

Automatic detection of liver tumor motion by fluoroscopy images

Background: A method to track liver tumor motion signals from fluoroscopic images without any implanted gold fiducial markers was proposed in this study to overcome the adverse effects on precise tumor irradiation caused by respiratory movement. Materials and Methods: The method was based on the following idea: (i) Before treatment, a series of fluoroscopic images corresponding to different bre...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

DAMAGE DETECTION OF BRIDGE STRUCTURES IN TIME DOMAIN VIA ENHANCED COLLIDING BODIES OPTIMIZATION

In  this  paper,  a  method  is  presented  for  damage  detection  of  bridges  using  the  Enhanced Colliding Bodies Optimization (ECBO)  utilizing time-domain responses. The finite element modeling of the structure is based on  the equation of motion under the moving load, and the flexural stiffness of the structure is determined by the acceleration responses obtained via sensors placed in d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological measurement

دوره 35 12  شماره 

صفحات  -

تاریخ انتشار 2014